Purificación de aguas por Fotocatálisis heterogénea: Estado del Arte. Parte 2
- Creado por admin
- El 29 diciembre, 2014
- 0
Julián Blanco Gálvez, Sixto Malato Rodríguez, Claudio A. Estrada Gasca,
Erick R. Bandala, Silvia Gelover y Teresa Leal
4. APLICACIONES POTENCIALES
Pondremos el énfasis en las aplicaciones de las tecnologías que aprovechan la luz solar para el tratamiento de aguas residuales que contienen contaminantes no biodegradables; en este caso, los tratamientos biológicos, obviamente, no son viables. A lo largo de la Tercera Parte se verán en más detalle ejemplos de este tipo, y otros casos de interés.
La capacidad de tratamiento con esta tecnología [20] es linealmente dependiente del flujo energético, y su aplicación se considera que normalmente va a estar en el rango de varias decenas hasta varios cientos de m3 por día. En el caso de usar radiación solar, sólo se podrán tratar aquellos residuos que se adapten a un modo de recirculación con cargas discontinuas, lo que significa que el tratamiento debe ser independiente del proceso de generación de agua residual. Dentro de este marco, la experiencia acumulada en estos últimos años [20] muestra que el proceso de fotocatálisis puede ser aplicado, entre otros, al tratamiento de los siguientes contaminantes en agua. En todos los ejemplos que se muestran se ha usado radiación solar.
Fenoles. Los fenoles son compuestos muy tóxicos que producen un sabor desagradable en el agua incluso a muy bajas concentraciones (1-10 mg/L). Su concentración máxima en plantas de tratamiento biológico no debe de superar 1-2 mg/L. Los fenoles son degradados fácilmente mediante fotocatálisis. La Figura 10 muestra dos ensayos de degradación de agua residual procedente de una industria de fabricación de resinas fenólicas. El agua tratada contenía, además de fenol, otros muchos contaminantes como formol, ácido ftálico, ácido fumárico, ácido maleico, glicoles, xileno, tolueno, metanol, butanol, feniletileno, etc.
|
Compuestos orgánicos clorados. El proceso de detoxificación solar ha demostrado su eficiencia en la degradación de solventes halogenados, que pertenecen al grupo de los llamados VOCs, Volatile Organic Compounds. Estos compuestos son difíciles de tratar y, dada su peligrosidad, las distintas normativas son muy estrictas respecto a ellos. La Figura 11 ilustra la degradación mediante tecnología solar de varios compuestos orgánicos clorados volátiles: diclorometano, cloroformo, tricloroetileno y tetracloroetileno.
|
Una posible aplicación interesante de este caso es el tratamiento del agua procedente de las torres de lavado (scrubbers) que controlan e impiden la emisión de VOCs a la atmósfera.
Las plantas de producción de PVC también producen efluentes que contienen multitud de polímeros de cadena corta o monómeros del PVC que podrían ser tratados fotocatalíticamente.
Productos farmaceúticos. La producción de antibióticos y otros fármacos genera residuos intrínsecamente biocidas que no pueden ser tratados mediante sistemas biológicos. Tanto los procesos de limpieza periódica o los residuos de los propios procesos de fabricación pueden generar aguas contaminadas. La Figura 12 muestra un ejemplo de degradación de aguas residuales de una industria farmacéutica; dos catalizadores comerciales distintos (ambos TiO2) demostraron similar, y adecuada, efectividad.
|
Compuestos preservadores de la madera. El compuesto más tóxico y persistente entre los usados para el tratamiento de la madera es el pentaclorofenol. Aunque el uso de este compuesto se encuentra ya prohibido en muchos países, todavía es ampliamente usado. La madera, en bruto o en piezas cortadas, se trata normalmente en baños que contienen este u otros productos. Estos baños pierden su actividad cada cierto número de procesos por lo que deben ser regenerados. El proceso fotocatalítico, en sus diversas variantes, se ha demostrado altamente eficiente para el tratamiento de este tipo de aguas con residuos de este tipo de procesos. Un ejemplo fue presentado en la Figura 9.
Residuos de la limpieza de tanques portuarios. Un gran porcentaje del transporte internacional de productos químicos se realiza por mar y, normalmente, existen multitud de tanques portuarios para la recepción, almacenamiento y distribución de productos químicos básicos para la industria química. Estos depósitos portuarios deben de ser limpiados periódicamente o cuando van a ser llenados con una sustancia diferente de la que contenían anteriormente. Estos procesos de limpieza generan grandes cantidades de agua contaminada con bajas concentraciones de este tipo de productos que podrían ser tratados mediante fotocatálisis solar. Entre las sustancias tratadas con éxito con esta tecnología se encuentran metham sodio, percloroetileno, tricloroetileno, fenoles, cloruro de metileno etc. La Figura 13 muestra como ejemplo la degradación de metham sodio; los resultados demuestran que es posible aplicar el proceso para el tratamiento del aguas del lavado de tanques cisternas para el transporte de ese producto [21].
|
Eliminación de iones metálicos. Si bien hasta ahora nos hemos centrado en la oxidación de materia orgánica, la fotocatálisis en esencia es una forma de acelerar una reacción redox, entre un oxidante y un reductor. Los oxidantes que hemos mencionado incluyen al oxígeno, al agua oxigenada y al peroxodisulfato; sin embargo, es posible también reducir iones metálicos tóxicos, llevándolos en algunos casos al estado metálico, lo que facilita su remoción de la solución acuosa. Es más, es posible acoplar la reducción de iones metálicos con la oxidación de contaminantes orgánicos, para la remoción simultánea de ambos. En general, cuanto más alta es la concentración de compuestos orgánicos, más rápida es la velocidad de reducción de metales y un aumento en la concentración de metales aumenta la velocidad de oxidación de los orgánicos [22]. La factibilidad de la remoción fotocatalítica de metales depende del potencial de reducción estándar del par Mn+/M0. Así, por ejemplo, se puede remover Ag(II), Cr(VI), Hg(II) y Pt(II), pero no Cd2+, Cu+2, y Ni+2. El requisito de factibilidad está también vinculado con un aumento de la insolubilidad al reducirse; no es realmente imprescindible llegar al estado metálico.
Una aplicación interesante es la reducción de Cr(VI) a Cr(III) (Figura 14). El potencial redox E0(Cr(VI)/Cr(III)), y por ende la posibilidad de reducción fotocatalítica, es muy sensible al pH. El proceso es más eficiente por debajo de pH 2; en estas condiciones, el producto de reducción, Cr+3, es soluble; es necesario neutralizar parcialmente el ácido, hasta alcanzar pH ≈ 5, para precipitar el óxido de cromo(III) hidratado, Cr2O3.xH2O. La velocidad de reducción de Cr(VI) es muy sensible a la naturaleza del reductor orgánico que se oxida simultáneamente. Generalmente, cuanto más fácilmente oxidable el compuesto orgánico, mayor es la velocidad de reducción fotocatalítica, y diferentes aguas residuales pueden exhibir velocidades muy diferentes de tratamiento, dependiendo de su composición química.
|
Degradación de cianuros. La degradación fotocatalítica de cianuros es otra aplicación interesante ya que con esta técnica no se producen lodos ni compuestos altamente tóxicos, como el cloruro de cianógeno, se evita el uso de productos de difícil manejo como el cloro y no es necesario almacenar reactivos químicos [24]. Otra ventaja adicional es la posible recuperación del metal normalmente complejado al cianuro. La oxidación fotocatalítica es capaz de transformar el CN– en productos como el cianato, OCN– (unas 1000 veces menos tóxico) con una cuidadosa elección de las condiciones de reacción. Una vez lograda esta conversión, el OCN– se oxida completamente y los productos finales son principalmente CO2 y NO– 3.
CN– + 2OH – + 2h+ HV –>H2O | (8) |
OCN – + 4O2 +4H 2O –> NO– 3 + CO2 + H2O2 | (9) |
Plaguicidas. Esta familia comprende un amplio rango de productos químicos, extensamente utilizados en agricultura. Algunos compuestos son solubles en agua, otros son dispensados como suspensiones, otros tienen base oleica y otros son utilizados como polvos. Sin embargo, la mayoría de ellos están disueltos, suspendidos o emulsionados en agua antes de pulverizar y la cantidad de residuos generados varía enormemente dependiendo del manejo y del proceso (limpieza y enjuague del equipo de pulverización, modo de disposición del caldo de pulverización sobrante, reciclado de botellas de plástico, etc). La destrucción de plaguicidas es una de las aplicaciones más adecuadas de la tecnología de fotocatálisis [25-26] porque generalmente, se deben tratar soluciones o suspensiones multi-componentes muy diluidas (concentración típica inferior a los 1000 mg/L), en pequeños volúmenes que pueden recircularse. Se han obtenido muy buenos resultados con pesticidas organohalogenados y organofosforados, carbamatos, tiocarbamatos, triacinas, etc. Además de la gran cantidad de residuos de pesticidas generados en agricultura, hay también una gran cantidad de residuos industriales de fábricas que producen ingredientes activos y, especialmente, de fábricas que almacenan ingredientes activos y otros aditivos para ser fraccionados, mezclados y envasados.
Limpieza de suelos contaminados. La descontaminación de suelos contaminados es otra interesante aplicación potencial del proceso de fotocatálisis. Dependiendo de la naturaleza de los contaminantes, el tratamiento puede realizarse en fase tanto acuosa como gaseosa (ver Capítulo 2), dependiendo de si la limpieza se realiza con agua o con aire. Un ejemplo, validado por los resultados que se muestran en la Figura 15, es el tratamiento del agua utilizada para el lavado y regeneración de suelos contaminados con lindano, producto muy tóxico y estable en el medioambiente.1
|
Desinfección de agua. El cloro es el producto químico más comúnmente utilizado para la desinfección de agua debido a su capacidad para inactivar bacterias y virus. Sin embargo, la presencia de impurezas orgánicas en el agua puede generar subproductos no deseados, tales como halometanos y otros compuestos cancerígenos; por estas razones seestá estudiando la factibilidad de aplicar en ciertos casos tecnologías alternativas de desinfección de agua. Entre ellas se encuentra el uso de radiación ultravioleta de 254 nm, mediante lámparas. El proceso de fotocatálisis mediante TiO2, utilizando luz solar con longitudes de onda desde 290 hasta 400 nm, es mucho menos activo como germicida. Sin embargo, el efecto antibacteria ha sido demostrado en varios microorganismos, incluyendo Escherichia Coli, Lactobacillus
Streptococos, etc. (Figura 16), y también se ha informado la desinfección de virus tales como Phage MS2 y poliovirus1. En todos los casos, la oxidación superficial inducida fotocatalíticamente produce una división entre la pared de la célula y la membrana, resultando en su desintegración y, por tanto, en la aniquilación de las bacterias existentes en el medio.
|
A pesar del amplio espectro de investigaciones realizadas hasta la fecha [27-28] sobre el proceso de fotocatálisis, el uso potencial de esta técnica para la desinfección de agua se encuentra todavía esencialmente inexplorado.
De todo lo expuesto anteriormente se deduce que, mediante técnicas de fotocatálisis, se puede tratar un elevado número de compuestos orgánicos no biodegradables que aparecen presentes en aguas residuales. El proceso es capaz, en la gran mayoría de casos, de conseguir una mineralización completa del carbono orgánico existente en el medio; es más, en las aplicaciones comerciales no será necesario alcanzar el 100% de mineralización, ya que mucho antes se habrá alcanzado siempre un nivel suficiente de biodegradabilidad que va a permitir transferir el agua a un proceso de tratamiento biológico, más sencillo y económico que cualquier tratamiento terciario de oxidación avanzada [29]. Un buen indicador del momento adecuado para transferir las aguas de un proceso a otro es la toxicidad residual del efluente durante el proceso de mineralización. Otro parámetro bastante útil es el denominado “Estado de Oxidación Medio”. La Figura 17 muestra esquemáticamente un proceso combinado de ambas tecnologías.
|
5. TECNOLOGÍAS BASADAS EN EL USO DE LÁMPARAS
En un alto porcentaje de estudios sobre fotocatálisis se emplean lámparas como fuente de luz. Los aspectos abordados incluyen estudios específicos de la degradación de muy diversos contaminantes, la caracterización de nuevos catalizadores (ver Capítulo 7), incluyendo TiO2 en sus variantes (impurificado con iones metálicos como el Pt, sensibilizado con tintas y colorantes, formas nanocristalinas, etc.) así como la investigación sobre aspectos fundamentales de la fotocatálisis. Las lámparas más empleadas son de mercurio de xenón y los denominados simuladores solares. Estas lámparas proporcionan luz en un rango de longitudes de onda por debajo de los 400 nm, esencial para la excitación del TiO2. Algunas proporcionan luz monocromática y otras un intervalo de longitudes de onda; en ocasiones se usan filtros a fin de obtener luz monocromática. Las intensidades empleadas van de los 2 a los 135 mW cm-2 y las potencias de unas pocas decenas a cientos de vatios (Figura 18) [30]. Para eliminar la radiación infrarroja y evitar el sobrecalentamiento, se han utilizados filtros especiales o de agua. El empleo de lámparas permite la caracterización precisa del tipo e intensidad de luz que se obtiene, sea por actinometría o mediante radiómetros.
|
Existen varios sistemas comerciales basados en los distintos tipos de lámparas indicados anteriormente. Uno de estos sistemas se muestra en la Figura 19; el agua a tratar circula a través del espacio existente entre dos tubos concéntricos de vidrio, y el foco de luz está situado dentro del tubo interior. La luz UV es suministrada por lámparas tipo fluorescente de 40 vatios como las caracterizadas en la Figura 18. Otros dispositivos existentes están basados en lámparas de mayor potencia, como es el caso de los sistemas denominados “Solarbox”.
|
Una característica usual de los sistemas existentes basados en lámparas es el uso de catalizador soportado, fijado en algún tipo de soporte inerte dentro del reactor. De esta forma se elimina la necesidad de recuperar el catalizador, a costa de una importante reducción en el rendimiento del sistema. La configuración del soporte es crítica, pues debe garantizar simultáneamente una buena iluminación del catalizador, y una buena dinámica del fluido en las zonas iluminadas. Un sistema de catalizador soportado razonablemente eficiente debe tener una actividad fotocatalítica adecuada (comparable a sistemas en los que el catalizador se encuentra suspendido), una baja pérdida de carga, larga duración y coste razonable. Hasta el momento, sin embargo, no ha sido posible alcanzar simultáneamente todas estas características. Uno de los principales inconvenientes, además de la menor actividad fotocatalítica, es la necesidad de reemplazar el catalizador (y el soporte en el que se encuentre fijado) una vez éste pierde su actividad, lo que supone un importante aumento en el coste global del sistema. Los soportes ensayados hasta ahora incluyen fibra de vidrio, fibras metálicas, mallas de acero, aluminio y distintos tipos de plástico y cerámicas como alúmina, carburo de silicio, etc. en las más variadas formas. Algunos ejemplos de técnicas viables utilizadas para soportar el catalizador son impregnaciones mediante disolventes, deposiciones mediante sustancias precursoras, técnicas sol-gel, etc (ver Capítulo 7).
Por el contrario, las condiciones operativas de los reactores con el catalizador en suspensión, garantizan una mayor eficiencia, menor pérdida de carga y una excelente transferencia de masa fluido a catalizador. Además el catalizador puede eliminarse y recuperarse fácilmente del medio reactivo mediante la desestabilización de la suspensión coloidal y la subsecuente sedimentación del TiO2.
6. TECNOLOGÍAS BASADAS EN EL USO DE RADIACIÓN SOLAR
El desarrollo de la tecnología de fotocatálisis solar se inició a finales de los años 80, partiendo de los diseños y sistemas ya existentes para procesos térmicos de baja y media temperatura (fundamentalmente colectores cilindro-parabólicos y sistemas sin concentración). Básicamente la modificaciones iniciales de estos equipos existentes consistieron en la modificación del reflector solar y en el receptor dado que este debe de ser transparente a la luz para poder introducir los fotones dentro del fluido que se quiere tratar [31]. Otra de las diferencias importantes es la ausencia de aislamiento térmico dado que la temperatura no juega un papel significativo en el proceso. Debe notarse que la fotocatálisis es un proceso fotónico, a diferencia de los procesos térmicos preexistentes de aprovechamiento de la energía solar.
Con estas premisas, a fines de los años 80 el National Renewable Energy Laboratory (NREL, USA), comenzó sus experiencias de Fotocatálisis Solar en los Laboratorios Sandia (Albuquerque), donde fue desarrollado el primer sistema solar para llevar a cabo experimentos de tratamiento de agua. Posteriormente fue instalado otro sistema en los Laboratorios Livermore (California) [32]. En 1990, el CIEMAT (España) inició también un programa de investigación en la Plataforma Solar de Almería (PSA) como consecuencia del cual se instaló un sistema experimental para la realización de ensayos y el desarrollo tecnológico del proceso para permitir su aplicación a problemáticas industriales (Figura 20).
|
Estos primeros sistemas experimentales estaban basados, fundamentalmente, en colectores cilindro-parabólicos, que era la tecnología más desarrollada y en la que históricamente se ha puesto un mayor énfasis (plantas SEGS para la producción de energía eléctrica en California). Estos colectores pueden tener mecanismos de seguimiento solar en uno o dos ejes y se basan en una parábola que refleja y concentra la luz solar sobre su foco. En dicho foco está situado el receptor solar y reactor tubular transparente de vidrio. Los sistemas de seguimiento son necesarios para poder concentrar luz solar y por eso están normalmente asociados a sistemas de concentración. Sólo pueden utilizar radiación solar directa, ya que es la única con un vector conocido, y son necesarios en aplicaciones térmicas cuando las temperaturas necesarias son superiores a 150ºC. Los sistemas de concentración tienen la ventaja de requerir un área de tubo reactor mucho más pequeña, lo que significa un circuito mucho menor para confinar, manejar y controlar el fluido del proceso. También, en el caso de utilizar catalizador soportado, los sistemas de concentración ofrecen la ventaja de permitir sistemas que, en principio, podrían ser más sencillos desde un punto de vista de ingeniería y, por lo tanto, más económicos.
Sin embargo, los sistemas fotocatalíticos con seguimiento solar tienen dos desventajas importantes frente a los que no tienen seguimiento (sistemas estáticos). La primera es su mayor complejidad, coste y necesidades de mantenimiento debido al propio sistema de seguimiento y la movilidad global del colector que obliga a estructuras más complejas y reforzadas. Si bien los sistemas con seguimiento poseen una mayor capacidad de intercepción de la luz solar, esta diferencia no resulta ser demasiado grande: por ejemplo, para una localización como la PSA un colector cilindro-parabólico con seguimiento en un eje y orientación este-oeste es capaz de interceptar anualmente el 76% de la radiación solar, mientras que una placa plana orientada al sur con una inclinación igual a la latitud local intercepta el 70% de la radiación total anual. A estas consideraciones se le ha de añadir que los sistemas estáticos no poseen pérdidas de rendimiento por factores asociados con la concentración y el seguimiento solar, tienen un mayor potencial para reducir costes de fabricación y la superficie necesaria para su instalación es más reducida, ya que proyectan menos sombras que los otros.
La segunda desventaja de los sistemas con seguimiento solar, tan importante o más que la primera para aplicaciones fotocatalíticas, es la imposibilidad de concentrar la radiación difusa. Esta limitación no es importante para aplicaciones solares térmicas, ya que la energía de la radiación difusa es una pequeña fracción de la energía de la radiación solar total. Para aplicaciones fotoquímicas, en cambio, la limitación es severa, ya que la componente difusa llega a representar el 50% de la radiación UV total que llega a la superficie terrestre. En efecto, los fotones de luz UV solar tienen una alta probabilidad de cambiar su trayectoria, transformándose de radiación directa en difusa, cuando interaccionan con las partículas de la atmósfera. Esta alta dispersión de la luz UV es producida por el mismo mecanismo que dispersa la luz azul mucho más que la luz roja, que es la causa por la que vemos el cielo azul. Debido a la dispersión, la mitad de la radiación solar UV llega a la superficie terrestre como luz difusa, incluso en días claros. La radiación solar UV (longitudes de onda desde 285 a 385 nm) da cuenta solamente del 2-3% de la energía total del espectro de la luz solar directa, pero alcanza el 4-6% cuando se considera el espectro de la luz solar global (radiación directa más difusa). También, las nubes delgadas, el polvo y la calima reducen el componente de luz directa mucho más que la componente difusa. Como los colectores solares estáticos (sin seguimiento solar) pueden utilizar ambas radiaciones directa y difusa cuando no concentran la luz solar (grado de concentración = 1), su rendimiento puede ser apreciablemente más alto para la aplicación fotocatalítica.
Por estas razones se ha realizado un gran esfuerzo en el diseño de sistemas solares estáticos y sin concentración para aplicaciones fotoquímicas en general y en especial para procesos fotocatalíticos. Sin embargo, el diseño de reactores robustos no es sencillo debido a los requerimientos de resistencia a la intemperie, baja pérdida de carga, elevada transmitancia en el UV, operación a elevadas presiones, etc. [33]. Los colectores Cilindro-Parabólico Compuestos (CPC) han resultado ser una de las mejores opciones tecnológicas para aplicaciones solares de fotocatálisis. Estos colectores solares estáticos, ampliamente utilizados para tubos de vacío, están constituidos por una superficie reflectante que sigue una forma involuta alrededor de un reactor cilíndrico y han demostrado aportar una de las mejores ópticas para sistemas de baja concentración (Figura 21).
|
Aunque estos colectores CPC no poseen seguimiento solar alguno, pueden alcanzar un factor de concentración de hasta unos 10 soles gracias a la forma geométrica de su superficie reflectiva. En caso de aplicaciones térmicas, con una orientación adecuada, pueden conseguirse unas 7 horas de aprovechamiento solar efectivo diario, siendo necesario corregir su orientación cada 3 ó 4 días. Para aplicaciones de fotocatálisis pueden ser diseñados con factor de concentración 1, con lo que, gracias al diseño particular del reflector, prácticamente la totalidad de la radiación UV que llega al área de apertura del colector CPC (tanto la directa como la difusa, independientemente ésta última de la dirección con que llega) es reflejada hacia el reactor, iluminando la parte interior del reactor tubular. Además, la forma tubular del reactor permite una fácil impulsión y distribución del agua a tratar, simplificando la parte hidráulica de la instalación. Los reflectores CPC están generalmente hechos de aluminio pulido y la estructura puede ser un simple marco soporte del fotorreactor con tubos conectados.
|
La Figura 23 muestra un esquema típico de un sistema de detoxificación solar en el estado actual de la tecnología. En primer lugar, cuenta con un filtro que se encarga de eliminar cualquier tipo de partícula que pudiera acumularse sobre la superficie del catalizador o en las paredes del reactor, restando eficiencia al sistema. El contactor gas-líquido asegura la presencia del suficiente oxígeno disuelto en el agua para permitir la completa oxidación de todos los contaminantes orgánicos. El gas puede ser oxígeno puro, aire u otro oxidante y ha de ser añadido o introducido en el sistema en forma continua porque el nivel de saturación de oxígeno disuelto en el agua normalmente no es suficiente para llevar a cabo el proceso de oxidación y, una vez consumido, este se detiene. El modo de operación puede ser en continuo con una única pasada a través del sistema (operación en flujo de pistón), o bien con algún porcentaje de realimentación o recirculación, dependiendo de los contaminantes presentes y los requerimientos de concentración a la salida del sistema. En caso de ser necesario, se puede añadir al agua una pequeña cantidad de óxido cálcico (CaO) antes del proceso de descarga, para neutralizar los ácidos simples que se hayan podido producir en el reactor, así como algún otro aditivo en función del uso posterior que se le vaya a dar al agua. Finalmente, en el concentrador solar o reactor tiene lugar el proceso fotocatalítico; en él se proporcionan los fotones con energía suficiente para que la reacción tenga lugar.
|
Estas tecnologías, tremendamente atractivas desde un punto de vista medioambiental, están suscitando un importante interés industrial para su utilización en las distintas aplicaciones que se indicaban en el apartado 5. Un ejemplo relevante lo constituye la instalación en Arganda del Rey (Madrid, España), en 1999, de la primera Planta Industrial de Fotocatálisis Solar que se ha instalado en el mundo (Figura 24). La energía solar se capta mediante colectores tipo Cilindro Parabólico Compuesto (CPC) diseñados y optimizados para este proceso.
|
0 comentarios on Purificación de aguas por Fotocatálisis heterogénea: Estado del Arte. Parte 2