Electricidad estática en el traspase de líquidos inflamables. parte 1
- Creado por admin
- El 11 agosto, 2005
- 0
Objetivos
|
La electricidad estática representa un desequilibrio temporal en la repartición de las cargas en la superficie de dos materiales en contacto por transferencia de electrones, creando un campo eléctrico y una diferencia de potencial entre aquellos que puede ser muy elevada. La magnitud de la carga depende principalmente de la velocidad de separación y/o fricción de los materiales y de su resistividad eléctrica, Otros parámetros tales como el estado de oxidación de la superficie de frotamiento, la presencia de agua no miscible y partículas como óxido de hierro, la naturaleza de los metales de recipientes y tuberías, la influencia de la temperatura, etc. tienen también su importancia sobre la generación de cargas y su polaridad. Cuando cuerpos conductores están separados por un aislante o incluso por el aire constituyen un condensador al quedar cargados uno con una carga positiva y otro con otra carga igual pero negativa. Al establecer una vía conductora se libera tal energía almacenada descargándose y produciendo posiblemente una chispa.Es esta recombinación brusca mediante chispa de las cargas separadas que constituye el riesgo. Generalmente tales chispas, denominadas técnicamente descargas disruptivas, se producen a través del aire entre un cuerpo cargado eléctricamente y un cuerpo próximo no cargado, pero conectado eléctricamente a tierra, al encontrarse ambos a una distancia muy corta. A menor distancia también menor es la tensión necesaria para que se produzca la chispa. El parámetro fundamental determinante de la peligrosidad de una chispa es la cantidad de energía liberada en el instante de producirse. Esta energía se manifiesta en forma de radiaciones, (que hacen visible la chispa), de ionización y de calor. Esquemáticamente es esta última la desencadenante de la reacción de combustión. Cuando tales descargas electrostáticas con chispa se producen en una atmósfera inflamable, es relativamente fácil que se inicie el incendio, dado que la energía de activación que aportan acostumbra ser superior a la que se precisa para la combustión de gases y vapores, que suele ser del orden de 0,25 mJ. El peligro de inflamación existe cuando la chispa es generada por una diferencia de potencial superior a los 1.000 V. Para que se produzcan incendios o explosiones deberán cumplirse conjuntamente las tres siguientes condiciones:
|
Formación y acumulación de la electricidad estática
|
La generación de cargas electrostáticas en los trasvases de líquidos inflamables se produce fundamentalmente por la separación mecánica de éstos en contacto directo con la superficie sólida a través de la cual fluyen o sobre la cual se depositan o agitan.
|
Riesgos
|
Son también situaciones especialmente generadoras de cargas electrostáticas:
En esta generación de cargas son factores determinantes la resistividad del fluido y la velocidad de trasvase, aunque también son aspectos importantes la forma y el sistema de llenado de los recipientes. Cuanto más baja sea la resistividad de un liquido, menos peligroso deberemos considerarlo. Aunque no existe un limite preciso al respecto, puede afirmarse que cuando la resistividad o resistencia específica de un líquido sea inferior o igual a 1010 W cm. la probabilidad de que se generen cargas electrostáticas peligrosas es baja. Los líquidos inflamables de estructura polar como los alcoholes (etílico, propílico, etc.), ácidos y bases, ésteres, etc. están dentro de este grupo. Cuando tal resistividad sea superior a 1010 W cm. pero inferior a 1012 W cm hay que efectuar un control del riesgo, tanto en la adopción de medidas de prevención y de protección, como de vigilancia de la posible presencia de impurezas o aditivos que pudieran hacer variar ostensiblemente su resistividad. Por encima de una resistividad de 1012 W cm. es necesario adoptar rigurosas medidas de seguridad dado que se trata de líquidos muy peligrosos ante este riesgo. En este grupo se encuentran líquidos inflamables de estructura no polar ya sean hidrocarburos de cadena lineal larga o ramificada como los derivados aromáticos. Por encima de los 1015 W cm. de resistividad la experiencia demuestra que los líquidos dejan de ser peligrosos ya que no existe acumulación de cargas, al ser su formación prácticamente despreciable. Ahora bien, tal parámetro aisladamente no es determinante en la valoración del riesgo. Han sucedido también accidentes en transvases de líquidos en principio no tan peligrosos, como el alcohol etílico (7,4.108 W cm.) y el acetato de etilo (1,0.109 W cm.), manejados en condiciones deficientes. En general los disolventes alifáticos y los hidrocarburos de bajo punto de ebullición tienen tendencia a almacenar menos cargas que los de punto más alto. Evidentemente cuanto mayor sea la velocidad de flujo del líquido mayor será la generación de cargas y también mayor será ésta si el líquido es proyectado por aspersión o pulverización que si es vertido a chorro. En cuanto al sistema de llenado de recipientes, un vertido libre por gravedad o por impulsión desde una abertura superior genera muchas más cargas que si es efectuado mediante bombeo por tubería conectada a la parte inferior o mediante tubería superior que alcance el fondo del recipiente. La acumulación de la electricidad estática es la resultante de dos acciones antagonistas: la formación y la disipación natural de las cargas eléctricas. Cuando la conductividad de un material es suficientemente elevada para asegurar la disipación rápida de las cargas formadas, no pueden crearse potenciales peligrosos y, en numerosos casos, las cargas se recombinan tras fracciones de segundo de haber sido formadas. En cambio, cuando se trata de transvases de líquidos de elevada resistividad, los tiempos de relajación una vez detenido su movimiento hasta que de forma natural se eliminan las cargas generadas suelen ser de segundos o incluso de minutos. La experiencia demuestra que, aunque las cargas en operaciones de transvase son principalmente generadas al fluir los líquidos por las canalizaciones, el riesgo en ellas es prácticamente inexistente dada la ausencia de fase gaseosa inflamable. En cambio el riesgo surge cuando el líquido llega al interior del recipiente, en el que precisamente se produce la acumulación de cargas en un espacio confinado peligroso. La repartición de cargas en el propio líquido no es homogénea, creando sobre la superficie libre del mismo cargas eléctricas puntuales que son tanto o más importantes que las que se forman en la interfase líquido/ fase gaseosa inflamable. Factores causales de muchos de los accidentes investigados, y relativos a la facilidad en la formación de cargas han sido la presencia de agua en los hidrocarburos o efectuarse el transvase simultáneo de dos fases heterogéneas, y la mala concepción del sistema de llenado de los recipientes. |
Peligros de las descargas electrostáticas en las superficies de los líquidos
|
Si se transvasa un líquido cargado eléctricamente a un recipiente las cargas unitarias se irán acumulando en el interior del mismo, pero al repelerse entre sí se localizarán mayoritariamente hacia sus superficies exteriores tanto las que están en contacto con el recipiente como la superior en contacto con el aire. Esta carga superficial es la que genera más problemas. Cabe considerar dos situaciones según que el recipiente metálico de llenado esté en contacto con tierra o aislado de ella. En el primer caso, y dado que el depósito está al potencial de tierra, externamente el depósito es eléctricamente neutro como lo es todo el conjunto del contenedor y el contenido, pero en su interior existirán diferencias de potencial entre el líquido y las propias paredes del recipiente, que se mantendrán hasta que tras el correspondiente tiempo de relajación las cargas del liquido se hayan ido disipando. Evidentemente ningún tipo de conexión equipotencial o puesta a tierra puede evitar esta carga superficial interna, que puede generar, caso de ser lo suficientemente alta, una descarga disruptiva entre la superficie libre del líquido y la pared interior del recipiente. El control de esta situación solo podría lograrse garantizando una atmósfera interior ininflamable. En caso de que el recipiente esté muy aislado de tierra, por ejemplo los camiones-cisterna, la carga de la superficie líquida atrae una carga igual de signo contrario hacia el interior del recipiente, dejando una carga igual a la del líquido en la pared exterior de la cisterna suponiendo que ésta sea metálica. Es entonces factible que se produzca una descarga electrostática por chispa, por ejemplo entre la boca del recipiente y la tubería de llenado o cualquier otro elemento metálico conectado eléctricamente a tierra, como un medidor de nivel o un muestreador de líquido que se introduzca por dicha boca, generando una situación de alto riesgo al ser posiblemente en tal zona la atmósfera inflamable. |
Cargas electrostáticas de personas
|
Las personas pueden acumular también cargas tanto por su movimiento y contacto con el medio exterior como por la influencia de campos eléctricos a los que estén expuestos. El contacto con cuerpos susceptibles de carga puede producir la transmisión de cargas electrostáticas a las personas, así como también puede hacerlo la proximidad a objetos cargados eléctricamente. La acumulación de cargas también depende en gran medida de las características físicas de las personas, en especial del estado de su piel (seca o húmeda) y de su nivel de sudoración, aunque también influye la humedad ambiental. El cuerpo humano es considerado un buen conductor de la electricidad debido principalmente a su alto contenido en agua, aunque su vestimenta puede ser un factor negativo que facilite la acumulación de cargas, debido en ocasiones a la baja conductividad de aquélla. Así, por ejemplo, la ropa de fibras sintéticas y el uso de guantes o calzado aislante es contraproducente cuando exista tal riesgo en atmósferas inflamables. El aislamiento de la persona del suelo por usar suelas de material no conductor (goma, plástico) o estar situada sobre pavimento no conductor es la condición necesaria para que ésta pueda acumular cargas electrostáticas considerables. Es normal para una persona alcanzar un potencial del orden de los 10.000 V, y dado que la capacidad del cuerpo humano actuando como condensador eléctrico es del orden de los 200-300 pF, la energla de las cargas electrostáticas es de aproximadamente 10 mJ, muy superior a la que se precisa como energfa de activación de atmósferas inflamables. E 1/2 CU2 E 1/2 (200.10-12).(104)2 10 mJ En tal sentido cabe afirmar que la descarga disruptiva entre un operario aislado de tierra y un cuerpo conductor (un elemento cualquiera de la instalación) es muy peligrosa por la energía que puede aportar. Aunque en ningún caso tal situación conlleva un riesgo de electrocución ya que la intensidad de la corriente que se genera es bajísima, y la única sensación que producirá será la de una ligera sacudida. |
Medidas de prevención y protección frente al riesgo de la electricidad estática
|
Distinguiremos entre las medidas preventivas, que tienen por objeto evitar la existencia de atmósferas inflamables y controlar que la generación de cargas sea lo más baja posible, de aquellas otras medidas que denominaremos de protección que tienen por objeto controlar las descargas disruptivas, a fin de evitar que éstas se produzcan o bien en caso de producirse que no sean peligrosas. En este grupo de medidas de protección se encuentran las que controlan la acumulación de cargas, facilitando su eliminación gradual sin chispas. Consideraremos medidas de prevención
Control de impactos mecánicos y otros focos de ignición
|
Control de atmósferas inflamables
|
Todo líquido inflamable contenido en un recipiente abierto y por encima de su punto de inflamación emite una cantidad de vapores capaz de formar con el aire mezclas inflamables. Es por ello necesario tener en cuenta que el riesgo no estará suficientemente controlado si sólo abordamos la eliminación y control de los focos de ignición, ya que aparte de la electricidad estática pueden ocurrir otros. Las medidas preventivas que evitan la formación de mezclas vapor-aire inflamables deben tener siempre un carácter prioritario, dado que ofrecen un más alto grado de fiabilidad frente al riesgo. Todo recipiente a vaciar o llenar debe permanecer, ya sea a través del tubo de aireación o de otra abertura, en constante comunicación con un fluido gaseoso, que será el propio aire, a no ser que se prevea otra sustancia gaseosa, por una simple razón de equilibrio de volúmenes. Por esto, evitaremos la formación de atmósferas inflamables de dos formas: mediante el empleo de un gas inertizante o mediante ventilación. El principal agente inertizante es el nitrógeno, no siendo aconsejable el uso del anhídrido carbónico y del vapor de agua, ya que estas sustancias generan a su vez mucha electricidad estática. En la actualidad en la industria petroquímica suele aplicarse como agente inertizante gas inflamable de la propia planta y, asegurando con rigurosas medidas de control que la atmósfera no será peligrosa al superarse notoriamente el límite superior de inflamabilidad de la mezcla gaseosa. La cantidad de gas inertizante a aportar está en función del tipo de gas empleado como tal y de los vapores inflamables existentes, lo que exige reducir el contenido del oxígeno por debajo del nivel mínimo para cada caso. Para la mayoría de líquidos combustibles es en general suficiente reducir la proporción del oxígeno del aire a un 11%. A fin de evitar que el consumo del agente inertizante sea excesivamente alto se utiliza un sistema de vaciado con atmósfera en circuito cerrado, incorporando válvulas de regulación automatizadas para admitir o expulsar el gas inertizante, a medida que el nivel del liquido en el recipiente disminuya o aumente. En el almacenamiento de líquidos bajo gas protector y en los depósitos de techo flotante, no se precisan adicionales medidas preventivas. Mediante ventilación forzada es también factible asegurar que la atmósfera interior de un recipiente abierto se sitúe por debajo de su límite inferior de inflamabilidad (LI.I.). Se trata de lograr mediante el aporte del suficiente caudal de aire exterior aplicado adecuadamente para realizar un barrido uniforme de la atmósfera interior que se contrarreste la cantidad de materia inflamable evaporada, consiguiendo una concentración ambiental por debajo del 20% del L.I.I. Si bien tal sistema no es de uso generalizado cabe considerar su aplicación siempre que se haga con el rigor necesario (Consultar referencia bibliográfica-4). |
0 comentarios on Electricidad estática en el traspase de líquidos inflamables. parte 1